A study of the existing problems of estimating the information transfer rate in online brain-computer interfaces.
نویسندگان
چکیده
OBJECTIVE Today, the brain-computer interface (BCI) community lacks a standard method to evaluate an online BCI's performance. Even the most commonly used metric, the information transfer rate (ITR), is often reported differently, even incorrectly, in many papers, which is not conducive to BCI research. This paper aims to point out many of the existing problems and give some suggestions and methods to overcome these problems. APPROACH First, the preconditions inherent in ITR calculation based on Wolpaw's definition are summarized and several incorrect ITR calculations, which go against the preconditions, are indicated. Then, the issues affecting ITR estimation during the test of online BCI systems are discussed in detail. Finally, a task-oriented online BCI test platform was proposed, which may help BCI evaluations in real-world applications. MAIN RESULTS The guidelines for ITR calculation in online BCIs testing are proposed. The platform executed in the Beijing BCI Competition 2010 shows that it can be used as a common way to compare the online performances (including the ITR) of existing BCI paradigms. SIGNIFICANCE The proposed guidelines and task-oriented test platform may reduce the uncertainty and artifacts of online BCI performance evaluation; they provide a relatively objective way to compare different BCI's performances in real-world BCI applications, which is a forward step toward developing standards for BCI performance evaluation.
منابع مشابه
Selecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملComparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System
Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...
متن کاملEvaluating Multipath TCP Resilience against Link Failures
Standard TCP is the de facto reliable transfer protocol for the Internet. It is designed to establish a reliable connection using only a single network interface. However, standard TCP with single interfacing performs poorly due to intermittent node connectivity. This requires the re-establishment of connections as the IP addresses change. Multi-path TCP (MPTCP) has emerged to utilize multiple ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neural engineering
دوره 10 2 شماره
صفحات -
تاریخ انتشار 2013